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ABSTRACT :  In this paper, evolution of soliton pulses has been discussed. It is based on pulse spreading due to
linear effects i.e. Group Velocity Dispersion (GVD) and non-linear effects which are dependent on refractive
index variation due to the intensity of light, called self phase modulation (SPM). The dispersion due to GVD is
balanced by the dispersion due to SPM and the resultant waves are called solitons. The solitons maintain their
shapes over long distances and are found to be very suitable for long-range communication. Schrödinger equation
that describes the light propagation in optical fibres, has been discussed. The applications of solitons in long-
range optical communication have been dealt with. The problems and difficulties associated with solitons and
their remedies have been outlined.
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I. INTRODUCTION

Dispersion has been a problem in optical fibre
communication, particularly at high bit-rates and for long
haul communication. Solitons based optical pulses, which
maintain their shapes over long distances of several
thousands of kilometres, find their application in optical
networks carrying huge information.

Optical solitons are localized electromagnetic waves that
propagate steadily in non-linear media from a robust balance
between non-linearity and linear broadening due to
dispersion and/or diffraction [1]. The solitons are classified
on being either temporal or spatial, depending upon whether
the confinement of light occurs in time or space during
propagation. Both types of solitons evolve from a non-linear
change in refractive index of a material caused by the
variation in the intensity of light, a phenomenon called Kerr
effect.

A spatial soliton is formed when the self-focussing of
an optical beam balances its natural diffraction induced
spreading. Self Phase Modulation (SPM) counter acts the
natural dispersion broadening of an optical pulse and leads
to formation of temporal solitons. The earliest example of
temporal solitons is related to the discovery of the self
induced transparency (SIT) in 1967 [2]. Optical soliton in a
fibre forms a solitary wave as the envelope satisfies non-
linear Schrödinger equation and was shown theoretically for
the first time in 1973 [2]. It has been established that the
optical pulses could propagate in an optical fibre without
changing their shapes, if they experience anomalous
dispersion [1]. In this paper, we discuss the concepts of

temporal solitons and their applications in fibre optic
communications.

II. TEMPORAL SOLITONS AND THEIR
EVOLUTION

It is necessary to understand how optical pulses
propagate inside a single mode fibre in the presence of
dispersion (chromatic) and non-linearity (intensity
dependence of refractive index).

These are best understood by the phenomenon called
Self Phase Modulation (SPM) and the Group Velocity
Dispersion (GVD). We discuss these two phenomena one
by one and thereafter Schrödinger�s equation.

(a) Self Phase Modulation

SPM is the change in the frequency of an optical pulse
caused by a phase shift induced by the pulse itself. SPM
arises because the refractive index of the fibre has intensity
dependent component. When the optical pulse propagates
through the fibre, the higher intensity portions of an optical
pulse encounter high refractive index of the fibre compared
with the lower intensity portions. The leading edge of the
pulse, thus experiences a positive refractive index gradient

 
 
 

dn

dt
 and the trailing edge, a negative refractive index

gradient � 
 
 

dn

dt
. This temporally varying refractive index

change results in a temporally varying phase change. The
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optical phase changes with time in exactly the same way as
the optical signal [5, 6]. Different parts of the pulse undergo
different phase shift because of the intensity dependence
of phase fluctuations. This is called frequency chirping [7].
The rising edge of the pulse finds frequency shift in upper
side, while the trailing edge experiences shift in lower side
as shown in Fig. 1 [2, 7].

Fig. 1: Spectral Broadening of a pulse due to SPM.

Hence, primary effect of SPM is to broaden the spectrum
of the pulse keeping the temporal shape unaltered.

For an optical fibre which contains high transmitted
power of intensity I, the phase [] induced by a field
E = Eo cos (t � kz) over a fibre length L is given by
[ 6, 7, 8].
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Where Leff is the effective length 
1 � exp(� )


l

 , nl is

linear refractive index, nnl is non-linear refractive index and
 is attenuation constant.

In equation (1) above, the first term, i.e. 2


.nl.Leff refers

to linear portion of the phase constant ( )l , while the

second term i.e., 2
. . .


 nl effn I L  denotes non-linear phase

constant ( )nl . This variation in phase with time is
responsible for change in frequency spectrum.

For a Gaussian Pulse, the optical carrier frequency ù is
modulated and the new instantaneous frequency becomes,

0
  

d
w

dt
...(2)

The sign of phase shift due to SPM is negative because
of the minus sign in the expression for phase i.e. (t  � kz).
From equations (1) and (2), we get
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d n dt
L n
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...(3)

Therefore,

 = 0
2� . .
 eff nl

dI
w L n

dt
...(4)

At  the leading edge of the  pulse, 
dI

dt
 > 0,

Therefore,
 =  0 � (t) ...(5)

and at the trailing edge 
dI

dt
 > 0

Therefore,
 =  0 + (t) ...(6)

Where

(t) = 
2 · . .
 eff nl

dI
L n

dt

Thus the chirping (frequency variation) takes place due
to SPM. The chirping leads to spectral broadening of the
pulse without any change in temporal distribution.

(b) Group Velocity Dispersion

Any optical signal contains a number of wavelengths
depending upon the number of channels/information carried
by it. The group velocity of a signal is the function of
wavelength and each spectral component, by and large,
travels independently, and undergoes a group delay and
the pulse broadening [Ref. 8]. The pulse broadening leads
to overlapping with neighbouring pulses which further leads
to Inter symbol interference (ISI) and the receiver is not
able to identify the exact pulses. The group delay, Ig, per
unit length in the direction of propagation is given by:

21 1
· � ·
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g

g

I d d
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where, L is the distance traveled by the pulse,  is the
propagation constant along fiber axis, k is the wave

propagation constant = 
2


 and  vg = group velocity =

�1 
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 

d
c

db
 (9) [9]. The delay difference per unit wavelength

can be approximated as, 

gdI

d
 assuming the optical source

not to be too wide in spectral width. For spectral width ,
the total delay difference T over distance L, can be written
as
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where  is the angular frequency

The factor is 2 = 
2

2





d

d
 a GVD parameter, which

determines the quantum of pulse dispersion in time.

(c) Schrödinger Equation

The non-linear Schrodinger Equation [8, 9] best
describes the light propagation in optical fibers
[8, 9]. The Schrödinger Equation can be expressed in terms
of the normalized coordinates as:

2
2 2

2
� | | . 0

2 2

du s u
i N u u i u

dz t

               
...(11)

where u (z, t) is the pulse envelope function, Z is the
propagation distance along the fiber, N is an integer
designating the order of soliton and,  is the coefficient of
energy gain per unit length.  if negative, represents the
energy loss.

Hence s = �1 for negative 2 (anomalous GVD � Bright
Soliton) and is + 1 for positive 2 (normal GVD � Dark
Soliton) as shown in Fig. 2 and 3.

Fig. 2: Evolution of Soliton in normal dispersion regime.

Fig. 3: Evolution of Soliton in anomalous dispersion regime.
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linear length LNL.

P0 is peak power of the pulse,

T0 is the normalized time

LD is the dispersion length

There are three conditions for three different values of
N, as under

(i) If N > 1, the SPM dominates

(ii) If N < 1, the dispersion effects dominate.

I.For N  1, both GVD and the SPM act against each
other in such a way that frequency chirping induced by the
SPM is just right to cancel the GVD induced broadening of
the pulse. The optical pulse would then propagate
undistorted in the form of a soliton [12, 13]. These are called
fundamental solitons.

By integrating eqn (1), the Schrödinger equation,
solution for the fundamental soliton (N  1) can be written
as:

 ( , ) sech( ) exp
2

   
 

tz
u z t t ...(12)

where sech (t) is the hyperbolic secant function.

A special role is played by those solitons whose initial
amplitude at z = 0 is given by putting z = 0 in eqn (12), as:

u(0, t) = sech(t) ...(13)

During the analysis for input pulse having an initial
amplitude given by eqn (13), it is found that its shape
remains unchanged during the propagation in the fiber when
N  1 (it is called fundamental solitons), but follow a periodic
pattern for integer values of N > 1 (called higher order
temporal solitons).

In eqn (13), we see that the phase term exp
2

 
 
 

tz
 has

no influence on the shape of the pulse, the soliton is
independent of Z and hence it is non-dispersive in the time
domain [14, 15]

It is this property of a fundamental soliton that it is an
ideal solution for optical communication. The optical solitons
are very stable against perturbations. Thus they can be
created even when the pulse shape and peak power deviates
from ideal condition (i.e. value corresponding to N = 1).

III.  APPLICATIONS AND CONSTRAINTS

An important application of the solitons is the
transmission of information through optical fibers. Here we
will discuss the concept of solitons as carriers in the optical
communication system. We will also discuss various
problems related to the soliton based communication
systems and measures to tackle them.
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(a) Information Transmission

The soliton is used in each bit slot representing 1 in a
bit stream as shown in Fig. 4. The neighboring solitons in
this scheme should be well separated and thus the spacing
between two solitons exceeds a few times their FWHM (Full
Width at Half Maximum). [12, 16]. This can be ensured by
keeping soliton width a small fraction of the bit slot. For
this we use RZ format as shown in Fig. 4.

Fig. 4: Soliton bit stream in RZ format.

The bit rate and the soliton width is related as [Ref 2 ]

0 0
1

1/ 2 
B

B q T
T

...(14)

where TB is the duration of the bit slot and is

0
0

2  BT
q

T
 the normalized separation between neighboring

solitons. The soliton communication systems require an
optical source capable of producing chirp free Pico-second
pulses at a high repetition rate with a shape closest to the
�Sech Shape�. The source should operate in the wavelength
region ~ 1.55  m.

(b) Interaction Problems

The existence of solitons in the neighboring bit perturbs
a soliton because the combined optical field is not a solution
to the NLSE. The neighboring solitons either come closer
or move apart because of the non linear interaction between
them. This introduces error in the data. This phenomenon
has been studied in detail [17, 18]. It has been found that
this interaction can be reduced by using unequal amplitude
for neighboring solitons. This interaction can also be
modified by factors such as initial frequency chirp imposed
on input pulse. A relatively large soliton spacing, necessary
to avoid soliton interaction, limits the bit rate of soliton
based optical fiber communication.

(c) Loss Managed Solitons

At long distances, the effect Self Phase Modulation
(SPM), which is dependent on the intensity of the optical
signal, weakens due to losses in the optical fiber. Due to
this, the SPM effect is not strong enough to counter the
dispersion due to GVD. Therefore, to overcome the effect
of fiber losses, soliton must be amplified periodically using
either of the two kinds of amplification techniques

[12, 19] dumped and distributed techniques. If the spacing
between amplifiers LA is less than the dispersion length LD
(LA << LD), the dumped amplification is useful. The systems
with bit rates greater than 10 Gb/s, the condition of
LA<< LD cannot be satisfied. In such circumstances, the
other technique, distributed amplification technique is better
suited. This scheme is superior to the dumped amplification
because it compensates losses locally at every point along
the optical fiber link.

(d) Dispersion Managed Solitons

For WDM systems, it is necessary to employ dispersion
management. It has been found that if the GVD parameter
2 varies along the fiber length, the soliton systems benefit
considerably. A scheme proposed in 1987 [20] relaxes the
condition of LA<< LD imposed on loss managed solitons, by
decreasing the GVD along the fiber length. Such fibers, called
Dispersion-Decreasing Fibers (DDFs) are designed in such
a way that the decreasing GVD counteracts the reduced
SPM experienced by solitons which have weakened from
fiber losses. The soliton would then remain unperturbed.
Such systems are called Dispersion Managed Solitons.

Qualitatively, since the soliton peak power decreases
exponentially in a lossy fiber, the GVD parameter also has
to decrease exponentially with the same loss coefficient to
counteract the reduced SPM. The fundamental soliton then
maintains its shape and width even in a lossy fiber.

(e) Noise and Jitter

Optical amplifiers are used in the soliton systems to
take care of fiber losses. But these amplifiers add noise to
the systems. This noise is originated from amplified
spontaneous emission effect (ASE effect). The cumulative
effect of ASE is that the variances of both the amplitude
and frequency fluctuations increase linearly along the fiber
link.

Amplitude fluctuations degrade the SNR of the soliton
bit stream. The SNR degradation, although undesirable, is
not the most limiting factor. Infact, the frequency fluctuations
affect the system performance much more severely by
inducing the timing jitter. Thus as the soliton frequency
fluctuates randomly, its transmit time through the fiber link
becomes random. This puts an upper limit on the bit rate
length product.

IV. CONCLUSION

Soliton has shown a lot of potential for optical fiber
communication systems.Solitons with EDFAs are more
suitable for long-range communication, because of their high
information carrying capacity and repeater less transmission.
Soliton based such systems are yet to be deployed in field
.With the development of technology and increase in demand
by the customers, these systems will find their way for the
better bit rate and longer distance.
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